494 lines
19 KiB
Python
494 lines
19 KiB
Python
from __future__ import annotations
|
|
|
|
import base64
|
|
import copy
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
import time
|
|
import warnings
|
|
from functools import lru_cache
|
|
from io import BytesIO
|
|
from typing import Optional
|
|
|
|
import requests
|
|
import torch
|
|
import torchvision
|
|
from packaging import version
|
|
from PIL import Image
|
|
from torchvision import io, transforms
|
|
from torchvision.transforms import InterpolationMode
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
IMAGE_FACTOR = 28
|
|
MIN_PIXELS = 4 * 28 * 28
|
|
MAX_PIXELS = 16384 * 28 * 28
|
|
MAX_RATIO = 200
|
|
|
|
VIDEO_MIN_PIXELS = 128 * 28 * 28
|
|
VIDEO_MAX_PIXELS = 768 * 28 * 28
|
|
FRAME_FACTOR = 2
|
|
FPS = 2.0
|
|
FPS_MIN_FRAMES = 4
|
|
FPS_MAX_FRAMES = 768
|
|
|
|
# Set the maximum number of video token inputs.
|
|
# Here, 128K represents the maximum number of input tokens for the VLLM model.
|
|
# Remember to adjust it according to your own configuration.
|
|
VIDEO_TOTAL_PIXELS = int(float(os.environ.get('VIDEO_MAX_PIXELS', 128000 * 28 * 28 * 0.9)))
|
|
logger.info(f"set VIDEO_TOTAL_PIXELS: {VIDEO_TOTAL_PIXELS}")
|
|
|
|
|
|
def round_by_factor(number: int, factor: int) -> int:
|
|
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
|
return round(number / factor) * factor
|
|
|
|
|
|
def ceil_by_factor(number: int, factor: int) -> int:
|
|
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
|
return math.ceil(number / factor) * factor
|
|
|
|
|
|
def floor_by_factor(number: int, factor: int) -> int:
|
|
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
|
return math.floor(number / factor) * factor
|
|
|
|
|
|
def smart_resize(
|
|
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
|
) -> tuple[int, int]:
|
|
"""
|
|
Rescales the image so that the following conditions are met:
|
|
|
|
1. Both dimensions (height and width) are divisible by 'factor'.
|
|
|
|
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
|
|
|
3. The aspect ratio of the image is maintained as closely as possible.
|
|
"""
|
|
if max(height, width) / min(height, width) > MAX_RATIO:
|
|
raise ValueError(
|
|
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
|
|
)
|
|
h_bar = max(factor, round_by_factor(height, factor))
|
|
w_bar = max(factor, round_by_factor(width, factor))
|
|
if h_bar * w_bar > max_pixels:
|
|
beta = math.sqrt((height * width) / max_pixels)
|
|
h_bar = max(factor, floor_by_factor(height / beta, factor))
|
|
w_bar = max(factor, floor_by_factor(width / beta, factor))
|
|
elif h_bar * w_bar < min_pixels:
|
|
beta = math.sqrt(min_pixels / (height * width))
|
|
h_bar = ceil_by_factor(height * beta, factor)
|
|
w_bar = ceil_by_factor(width * beta, factor)
|
|
return h_bar, w_bar
|
|
|
|
|
|
def to_rgb(pil_image: Image.Image) -> Image.Image:
|
|
if pil_image.mode == 'RGBA':
|
|
white_background = Image.new("RGB", pil_image.size, (255, 255, 255))
|
|
white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask
|
|
return white_background
|
|
else:
|
|
return pil_image.convert("RGB")
|
|
|
|
|
|
def fetch_image(ele: dict[str, str | Image.Image], size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
|
if "image" in ele:
|
|
image = ele["image"]
|
|
else:
|
|
image = ele["image_url"]
|
|
image_obj = None
|
|
if isinstance(image, Image.Image):
|
|
image_obj = image
|
|
elif image.startswith("http://") or image.startswith("https://"):
|
|
# fix memory leak issue while using BytesIO
|
|
with requests.get(image, stream=True) as response:
|
|
response.raise_for_status()
|
|
with BytesIO(response.content) as bio:
|
|
image_obj = copy.deepcopy(Image.open(bio))
|
|
elif image.startswith("file://"):
|
|
image_obj = Image.open(image[7:])
|
|
elif image.startswith("data:image"):
|
|
if "base64," in image:
|
|
_, base64_data = image.split("base64,", 1)
|
|
data = base64.b64decode(base64_data)
|
|
# fix memory leak issue while using BytesIO
|
|
with BytesIO(data) as bio:
|
|
image_obj = copy.deepcopy(Image.open(bio))
|
|
else:
|
|
image_obj = Image.open(image)
|
|
if image_obj is None:
|
|
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
|
image = to_rgb(image_obj)
|
|
## resize
|
|
if "resized_height" in ele and "resized_width" in ele:
|
|
resized_height, resized_width = smart_resize(
|
|
ele["resized_height"],
|
|
ele["resized_width"],
|
|
factor=size_factor,
|
|
)
|
|
else:
|
|
width, height = image.size
|
|
min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
|
max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
|
resized_height, resized_width = smart_resize(
|
|
height,
|
|
width,
|
|
factor=size_factor,
|
|
min_pixels=min_pixels,
|
|
max_pixels=max_pixels,
|
|
)
|
|
image = image.resize((resized_width, resized_height))
|
|
|
|
return image
|
|
|
|
|
|
def smart_nframes(
|
|
ele: dict,
|
|
total_frames: int,
|
|
video_fps: int | float,
|
|
) -> int:
|
|
"""calculate the number of frames for video used for model inputs.
|
|
|
|
Args:
|
|
ele (dict): a dict contains the configuration of video.
|
|
support either `fps` or `nframes`:
|
|
- nframes: the number of frames to extract for model inputs.
|
|
- fps: the fps to extract frames for model inputs.
|
|
- min_frames: the minimum number of frames of the video, only used when fps is provided.
|
|
- max_frames: the maximum number of frames of the video, only used when fps is provided.
|
|
total_frames (int): the original total number of frames of the video.
|
|
video_fps (int | float): the original fps of the video.
|
|
|
|
Raises:
|
|
ValueError: nframes should in interval [FRAME_FACTOR, total_frames].
|
|
|
|
Returns:
|
|
int: the number of frames for video used for model inputs.
|
|
"""
|
|
assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`"
|
|
if "nframes" in ele:
|
|
nframes = round_by_factor(ele["nframes"], FRAME_FACTOR)
|
|
else:
|
|
fps = ele.get("fps", FPS)
|
|
min_frames = ceil_by_factor(ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR)
|
|
max_frames = floor_by_factor(ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR)
|
|
nframes = total_frames / video_fps * fps
|
|
if nframes > total_frames:
|
|
logger.warning(f"smart_nframes: nframes[{nframes}] > total_frames[{total_frames}]")
|
|
nframes = min(min(max(nframes, min_frames), max_frames), total_frames)
|
|
nframes = floor_by_factor(nframes, FRAME_FACTOR)
|
|
if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
|
|
raise ValueError(f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}.")
|
|
return nframes
|
|
|
|
|
|
def _read_video_torchvision(
|
|
ele: dict,
|
|
) -> (torch.Tensor, float):
|
|
"""read video using torchvision.io.read_video
|
|
|
|
Args:
|
|
ele (dict): a dict contains the configuration of video.
|
|
support keys:
|
|
- video: the path of video. support "file://", "http://", "https://" and local path.
|
|
- video_start: the start time of video.
|
|
- video_end: the end time of video.
|
|
Returns:
|
|
torch.Tensor: the video tensor with shape (T, C, H, W).
|
|
"""
|
|
video_path = ele["video"]
|
|
if version.parse(torchvision.__version__) < version.parse("0.19.0"):
|
|
if "http://" in video_path or "https://" in video_path:
|
|
warnings.warn("torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0.")
|
|
if "file://" in video_path:
|
|
video_path = video_path[7:]
|
|
st = time.time()
|
|
video, audio, info = io.read_video(
|
|
video_path,
|
|
start_pts=ele.get("video_start", 0.0),
|
|
end_pts=ele.get("video_end", None),
|
|
pts_unit="sec",
|
|
output_format="TCHW",
|
|
)
|
|
|
|
total_frames, video_fps = video.size(0), info["video_fps"]
|
|
logger.info(f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
|
|
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
|
|
idx = torch.linspace(0, total_frames - 1, nframes).round().long()
|
|
sample_fps = nframes / max(total_frames, 1e-6) * video_fps
|
|
video = video[idx]
|
|
return video, sample_fps
|
|
|
|
|
|
def is_decord_available() -> bool:
|
|
import importlib.util
|
|
|
|
return importlib.util.find_spec("decord") is not None
|
|
|
|
|
|
def calculate_video_frame_range(
|
|
ele: dict,
|
|
total_frames: int,
|
|
video_fps: float,
|
|
) -> tuple[int, int, int]:
|
|
"""
|
|
Calculate the start and end frame indices based on the given time range.
|
|
|
|
Args:
|
|
ele (dict): A dictionary containing optional 'video_start' and 'video_end' keys (in seconds).
|
|
total_frames (int): Total number of frames in the video.
|
|
video_fps (float): Frames per second of the video.
|
|
|
|
Returns:
|
|
tuple: A tuple containing (start_frame, end_frame, frame_count).
|
|
|
|
Raises:
|
|
ValueError: If input parameters are invalid or the time range is inconsistent.
|
|
"""
|
|
# Validate essential parameters
|
|
if video_fps <= 0:
|
|
raise ValueError("video_fps must be a positive number")
|
|
if total_frames <= 0:
|
|
raise ValueError("total_frames must be a positive integer")
|
|
|
|
# Get start and end time in seconds
|
|
video_start = ele.get("video_start", None)
|
|
video_end = ele.get("video_end", None)
|
|
if video_start is None and video_end is None:
|
|
return 0, total_frames - 1, total_frames
|
|
|
|
max_duration = total_frames / video_fps
|
|
# Process start frame
|
|
if video_start is not None:
|
|
video_start_clamped = max(0.0, min(video_start, max_duration))
|
|
start_frame = math.ceil(video_start_clamped * video_fps)
|
|
else:
|
|
start_frame = 0
|
|
# Process end frame
|
|
if video_end is not None:
|
|
video_end_clamped = max(0.0, min(video_end, max_duration))
|
|
end_frame = math.floor(video_end_clamped * video_fps)
|
|
end_frame = min(end_frame, total_frames - 1)
|
|
else:
|
|
end_frame = total_frames - 1
|
|
|
|
# Validate frame order
|
|
if start_frame >= end_frame:
|
|
raise ValueError(
|
|
f"Invalid time range: Start frame {start_frame} (at {video_start_clamped if video_start is not None else 0}s) "
|
|
f"exceeds end frame {end_frame} (at {video_end_clamped if video_end is not None else max_duration}s). "
|
|
f"Video duration: {max_duration:.2f}s ({total_frames} frames @ {video_fps}fps)"
|
|
)
|
|
|
|
logger.info(f"calculate video frame range: {start_frame=}, {end_frame=}, {total_frames=} from {video_start=}, {video_end=}, {video_fps=:.3f}")
|
|
return start_frame, end_frame, end_frame - start_frame + 1
|
|
|
|
|
|
def _read_video_decord(
|
|
ele: dict,
|
|
) -> (torch.Tensor, float):
|
|
"""read video using decord.VideoReader
|
|
|
|
Args:
|
|
ele (dict): a dict contains the configuration of video.
|
|
support keys:
|
|
- video: the path of video. support "file://", "http://", "https://" and local path.
|
|
- video_start: the start time of video.
|
|
- video_end: the end time of video.
|
|
Returns:
|
|
torch.Tensor: the video tensor with shape (T, C, H, W).
|
|
"""
|
|
import decord
|
|
video_path = ele["video"]
|
|
st = time.time()
|
|
vr = decord.VideoReader(video_path)
|
|
total_frames, video_fps = len(vr), vr.get_avg_fps()
|
|
start_frame, end_frame, total_frames = calculate_video_frame_range(
|
|
ele,
|
|
total_frames,
|
|
video_fps,
|
|
)
|
|
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
|
|
idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist()
|
|
video = vr.get_batch(idx).asnumpy()
|
|
video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format
|
|
logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
|
|
sample_fps = nframes / max(total_frames, 1e-6) * video_fps
|
|
return video, sample_fps
|
|
|
|
|
|
def is_torchcodec_available() -> bool:
|
|
"""Check if torchcodec is available and properly installed."""
|
|
try:
|
|
import importlib.util
|
|
if importlib.util.find_spec("torchcodec") is None:
|
|
return False
|
|
from torchcodec.decoders import VideoDecoder
|
|
return True
|
|
except (ImportError, AttributeError, Exception):
|
|
return False
|
|
|
|
|
|
def _read_video_torchcodec(
|
|
ele: dict,
|
|
) -> (torch.Tensor, float):
|
|
"""read video using torchcodec.decoders.VideoDecoder
|
|
|
|
Args:
|
|
ele (dict): a dict contains the configuration of video.
|
|
support keys:
|
|
- video: the path of video. support "file://", "http://", "https://" and local path.
|
|
- video_start: the start time of video.
|
|
- video_end: the end time of video.
|
|
Returns:
|
|
torch.Tensor: the video tensor with shape (T, C, H, W).
|
|
"""
|
|
from torchcodec.decoders import VideoDecoder
|
|
TORCHCODEC_NUM_THREADS = int(os.environ.get('TORCHCODEC_NUM_THREADS', 8))
|
|
logger.info(f"set TORCHCODEC_NUM_THREADS: {TORCHCODEC_NUM_THREADS}")
|
|
video_path = ele["video"]
|
|
st = time.time()
|
|
decoder = VideoDecoder(video_path, num_ffmpeg_threads=TORCHCODEC_NUM_THREADS)
|
|
video_fps = decoder.metadata.average_fps
|
|
total_frames = decoder.metadata.num_frames
|
|
start_frame, end_frame, total_frames = calculate_video_frame_range(
|
|
ele,
|
|
total_frames,
|
|
video_fps,
|
|
)
|
|
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
|
|
idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist()
|
|
sample_fps = nframes / max(total_frames, 1e-6) * video_fps
|
|
video = decoder.get_frames_at(indices=idx).data
|
|
logger.info(f"torchcodec: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
|
|
return video, sample_fps
|
|
|
|
|
|
VIDEO_READER_BACKENDS = {
|
|
"decord": _read_video_decord,
|
|
"torchvision": _read_video_torchvision,
|
|
"torchcodec": _read_video_torchcodec,
|
|
}
|
|
|
|
FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None)
|
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
def get_video_reader_backend() -> str:
|
|
if FORCE_QWENVL_VIDEO_READER is not None:
|
|
video_reader_backend = FORCE_QWENVL_VIDEO_READER
|
|
elif is_torchcodec_available():
|
|
video_reader_backend = "torchcodec"
|
|
elif is_decord_available():
|
|
video_reader_backend = "decord"
|
|
else:
|
|
video_reader_backend = "torchvision"
|
|
print(f"qwen-vl-utils using {video_reader_backend} to read video.", file=sys.stderr)
|
|
return video_reader_backend
|
|
|
|
|
|
def fetch_video(ele: dict, image_factor: int = IMAGE_FACTOR, return_video_sample_fps: bool = False) -> torch.Tensor | list[Image.Image]:
|
|
if isinstance(ele["video"], str):
|
|
video_reader_backend = get_video_reader_backend()
|
|
try:
|
|
video, sample_fps = VIDEO_READER_BACKENDS[video_reader_backend](ele)
|
|
except Exception as e:
|
|
logger.warning(f"video_reader_backend {video_reader_backend} error, use torchvision as default, msg: {e}")
|
|
video, sample_fps = VIDEO_READER_BACKENDS["torchvision"](ele)
|
|
|
|
nframes, _, height, width = video.shape
|
|
min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS)
|
|
total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS)
|
|
max_pixels = max(min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05))
|
|
max_pixels_supposed = ele.get("max_pixels", max_pixels)
|
|
if max_pixels_supposed > max_pixels:
|
|
logger.warning(f"The given max_pixels[{max_pixels_supposed}] exceeds limit[{max_pixels}].")
|
|
max_pixels = min(max_pixels_supposed, max_pixels)
|
|
if "resized_height" in ele and "resized_width" in ele:
|
|
resized_height, resized_width = smart_resize(
|
|
ele["resized_height"],
|
|
ele["resized_width"],
|
|
factor=image_factor,
|
|
)
|
|
else:
|
|
resized_height, resized_width = smart_resize(
|
|
height,
|
|
width,
|
|
factor=image_factor,
|
|
min_pixels=min_pixels,
|
|
max_pixels=max_pixels,
|
|
)
|
|
video = transforms.functional.resize(
|
|
video,
|
|
[resized_height, resized_width],
|
|
interpolation=InterpolationMode.BICUBIC,
|
|
antialias=True,
|
|
).float()
|
|
if return_video_sample_fps:
|
|
return video, sample_fps
|
|
return video
|
|
else:
|
|
assert isinstance(ele["video"], (list, tuple))
|
|
process_info = ele.copy()
|
|
process_info.pop("type", None)
|
|
process_info.pop("video", None)
|
|
images = [
|
|
fetch_image({"image": video_element, **process_info}, size_factor=image_factor)
|
|
for video_element in ele["video"]
|
|
]
|
|
nframes = ceil_by_factor(len(images), FRAME_FACTOR)
|
|
if len(images) < nframes:
|
|
images.extend([images[-1]] * (nframes - len(images)))
|
|
if return_video_sample_fps:
|
|
return images, process_info.pop("fps", 2.0)
|
|
return images
|
|
|
|
|
|
def extract_vision_info(conversations: list[dict] | list[list[dict]]) -> list[dict]:
|
|
vision_infos = []
|
|
if isinstance(conversations[0], dict):
|
|
conversations = [conversations]
|
|
for conversation in conversations:
|
|
for message in conversation:
|
|
if isinstance(message["content"], list):
|
|
for ele in message["content"]:
|
|
if (
|
|
"image" in ele
|
|
or "image_url" in ele
|
|
or "video" in ele
|
|
or ele.get("type","") in ("image", "image_url", "video")
|
|
):
|
|
vision_infos.append(ele)
|
|
return vision_infos
|
|
|
|
|
|
def process_vision_info(
|
|
conversations: list[dict] | list[list[dict]],
|
|
return_video_kwargs: bool = False,
|
|
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | None, Optional[dict]]:
|
|
|
|
vision_infos = extract_vision_info(conversations)
|
|
## Read images or videos
|
|
image_inputs = []
|
|
video_inputs = []
|
|
video_sample_fps_list = []
|
|
for vision_info in vision_infos:
|
|
if "image" in vision_info or "image_url" in vision_info:
|
|
image_inputs.append(fetch_image(vision_info))
|
|
elif "video" in vision_info:
|
|
video_input, video_sample_fps = fetch_video(vision_info, return_video_sample_fps=True)
|
|
video_sample_fps_list.append(video_sample_fps)
|
|
video_inputs.append(video_input)
|
|
else:
|
|
raise ValueError("image, image_url or video should in content.")
|
|
if len(image_inputs) == 0:
|
|
image_inputs = None
|
|
if len(video_inputs) == 0:
|
|
video_inputs = None
|
|
if return_video_kwargs:
|
|
return image_inputs, video_inputs, {'fps': video_sample_fps_list}
|
|
return image_inputs, video_inputs |