deepcam/test/test_llm_vl.cpp
2025-06-26 13:47:54 +08:00

323 lines
9.1 KiB
C++

//
// llm_demo.cpp
//
// Created by MNN on 2023/03/24.
// ZhaodeWang
//
#include "llm.hpp"
#define MNN_OPEN_TIME_TRACE
#include <MNN/AutoTime.hpp>
#include <MNN/expr/ExecutorScope.hpp>
#include <fstream>
#include <sstream>
#include <stdlib.h>
#include <initializer_list>
#ifdef LLM_SUPPORT_AUDIO
#include "audio/audio.hpp"
#endif
using namespace DEEPCAM::Transformer;
static void tuning_prepare(Llm *llm)
{
MNN_PRINT("Prepare for tuning opt Begin\n");
llm->tuning(OP_ENCODER_NUMBER, {1, 5, 10, 20, 30, 50, 100});
MNN_PRINT("Prepare for tuning opt End\n");
}
std::vector<std::vector<std::string>> parse_csv(const std::vector<std::string> &lines)
{
std::vector<std::vector<std::string>> csv_data;
std::string line;
std::vector<std::string> row;
std::string cell;
bool insideQuotes = false;
bool startCollecting = false;
// content to stream
std::string content = "";
for (auto line : lines)
{
content = content + line + "\n";
}
std::istringstream stream(content);
while (stream.peek() != EOF)
{
char c = stream.get();
if (c == '"')
{
if (insideQuotes && stream.peek() == '"')
{ // quote
cell += '"';
stream.get(); // skip quote
}
else
{
insideQuotes = !insideQuotes; // start or end text in quote
}
startCollecting = true;
}
else if (c == ',' && !insideQuotes)
{ // end element, start new element
row.push_back(cell);
cell.clear();
startCollecting = false;
}
else if ((c == '\n' || stream.peek() == EOF) && !insideQuotes)
{ // end line
row.push_back(cell);
csv_data.push_back(row);
cell.clear();
row.clear();
startCollecting = false;
}
else
{
cell += c;
startCollecting = true;
}
}
return csv_data;
}
static int benchmark(Llm *llm, const std::vector<std::string> &prompts, int max_token_number)
{
int prompt_len = 0;
int decode_len = 0;
int64_t vision_time = 0;
int64_t audio_time = 0;
int64_t prefill_time = 0;
int64_t decode_time = 0;
int64_t sample_time = 0;
// llm->warmup();
auto context = llm->getContext();
if (max_token_number > 0)
{
llm->set_config("{\"max_new_tokens\":1}");
}
#ifdef LLM_SUPPORT_AUDIO
std::vector<float> waveform;
llm->setWavformCallback([&](const float *ptr, size_t size, bool last_chunk)
{
waveform.reserve(waveform.size() + size);
waveform.insert(waveform.end(), ptr, ptr + size);
if (last_chunk) {
auto waveform_var = MNN::Express::_Const(waveform.data(), {(int)waveform.size()}, MNN::Express::NCHW, halide_type_of<float>());
MNN::AUDIO::save("output.wav", waveform_var, 24000);
waveform.clear();
}
return true; });
#endif
for (int i = 0; i < prompts.size(); i++)
{
const auto &prompt = prompts[i];
/**
update config.json and llm_config.json if need. example:
llm->set_config("{\"assistant_prompt_template\":\"<|im_start|>assistant\\n<think>\\n</think>\%s<|im_end|>\\n\"}");
*/
// prompt start with '#' will be ignored
if (prompt.substr(0, 1) == "#")
{
continue;
}
if (max_token_number > 0)
{
llm->response(prompt, &std::cout, nullptr, 0);
while (!llm->stoped() && context->gen_seq_len < max_token_number)
{
llm->generate(1);
}
}
else
{
llm->response(prompt);
}
prompt_len += context->prompt_len;
decode_len += context->gen_seq_len;
vision_time += context->vision_us;
audio_time += context->audio_us;
prefill_time += context->prefill_us;
decode_time += context->decode_us;
sample_time += context->sample_us;
}
llm->generateWavform();
float vision_s = vision_time / 1e6;
float audio_s = audio_time / 1e6;
float prefill_s = prefill_time / 1e6;
float decode_s = decode_time / 1e6;
float sample_s = sample_time / 1e6;
printf("\n#################################\n");
printf("prompt tokens num = %d\n", prompt_len);
printf("decode tokens num = %d\n", decode_len);
printf(" vision time = %.2f s\n", vision_s);
printf(" audio time = %.2f s\n", audio_s);
printf("prefill time = %.2f s\n", prefill_s);
printf(" decode time = %.2f s\n", decode_s);
printf(" sample time = %.2f s\n", sample_s);
printf("prefill speed = %.2f tok/s\n", prompt_len / prefill_s);
printf(" decode speed = %.2f tok/s\n", decode_len / decode_s);
printf("##################################\n");
return 0;
}
static int ceval(Llm *llm, const std::vector<std::string> &lines, std::string filename)
{
auto csv_data = parse_csv(lines);
int right = 0, wrong = 0;
std::vector<std::string> answers;
for (int i = 1; i < csv_data.size(); i++)
{
const auto &elements = csv_data[i];
std::string prompt = elements[1];
prompt += "\n\nA. " + elements[2];
prompt += "\nB. " + elements[3];
prompt += "\nC. " + elements[4];
prompt += "\nD. " + elements[5];
prompt += "\n\n";
printf("%s", prompt.c_str());
printf("## 进度: %d / %lu\n", i, lines.size() - 1);
std::ostringstream lineOs;
llm->response(prompt.c_str(), &lineOs);
auto line = lineOs.str();
printf("%s", line.c_str());
answers.push_back(line);
}
{
auto position = filename.rfind("/");
if (position != std::string::npos)
{
filename = filename.substr(position + 1, -1);
}
position = filename.find("_val");
if (position != std::string::npos)
{
filename.replace(position, 4, "_res");
}
std::cout << "store to " << filename << std::endl;
}
std::ofstream ofp(filename);
ofp << "id,answer" << std::endl;
for (int i = 0; i < answers.size(); i++)
{
auto &answer = answers[i];
ofp << i << ",\"" << answer << "\"" << std::endl;
}
ofp.close();
return 0;
}
static int eval(Llm *llm, std::string prompt_file, int max_token_number)
{
std::cout << "prompt file is " << prompt_file << std::endl;
std::ifstream prompt_fs(prompt_file);
std::vector<std::string> prompts;
std::string prompt;
// #define LLM_DEMO_ONELINE
#ifdef LLM_DEMO_ONELINE
std::ostringstream tempOs;
tempOs << prompt_fs.rdbuf();
prompt = tempOs.str();
prompts = {prompt};
#else
while (std::getline(prompt_fs, prompt))
{
if (prompt.back() == '\r')
{
prompt.pop_back();
}
prompts.push_back(prompt);
}
#endif
prompt_fs.close();
if (prompts.empty())
{
return 1;
}
// ceval
if (prompts[0] == "id,question,A,B,C,D,answer")
{
return ceval(llm, prompts, prompt_file);
}
return benchmark(llm, prompts, max_token_number);
}
void chat(Llm *llm)
{
ChatMessages messages;
messages.emplace_back("system", "You are a helpful assistant.");
auto context = llm->getContext();
while (true)
{
std::cout << "\nUser: ";
std::string user_str;
std::getline(std::cin, user_str);
if (user_str == "/exit")
{
return;
}
if (user_str == "/reset")
{
llm->reset();
std::cout << "\nA: reset done." << std::endl;
continue;
}
messages.emplace_back("user", user_str);
std::cout << "\nA: " << std::flush;
llm->response(messages);
auto assistant_str = context->generate_str;
messages.emplace_back("assistant", assistant_str);
}
}
int main(int argc, const char *argv[])
{
if (argc < 2)
{
std::cout << "Usage: " << argv[0] << " config.json <prompt.txt>" << std::endl;
return 0;
}
MNN::BackendConfig backendConfig;
auto executor = MNN::Express::Executor::newExecutor(MNN_FORWARD_CPU, backendConfig, 1);
MNN::Express::ExecutorScope s(executor);
std::string config_path = argv[1];
std::cout << "config path is " << config_path << std::endl;
std::unique_ptr<Llm> llm(Llm::createLLM(config_path));
llm->set_config("{\"tmp_path\":\"tmp\"}");
{
AUTOTIME;
llm->load();
}
if (true)
{
AUTOTIME;
tuning_prepare(llm.get());
}
if (argc < 3)
{
chat(llm.get());
return 0;
}
int max_token_number = -1;
if (argc >= 4)
{
std::istringstream os(argv[3]);
os >> max_token_number;
}
if (argc >= 5)
{
MNN_PRINT("Set not thinking, only valid for Qwen3\n");
llm->set_config(R"({
"jinja": {
"context": {
"enable_thinking":false
}
}
})");
}
std::string prompt_file = argv[2];
return eval(llm.get(), prompt_file, max_token_number);
}